小升初数学公式概念大全
小升初数学公式概念大全
第一部分
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)5=25+45
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有的算式并计算。
10、分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:25或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:=9:18
26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:xy = k( k一定)或k / x = y
28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
35、互质数: 公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
39、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46、利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654
51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654
52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
第二部分:数量关系式
1、单价数量=总价
2、单产量数量=总产量
3、速度时间=路程
4、工效时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
6、被减数-减数=差 减数=被减数-差 被减数=减数+差
7、因数因数=积 一个因数=积另一个因数
8、被除数除数=商 除数=被除数商 被除数=商除数
9、有余数的除法: 被除数=商除数+余数
10、一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:9056=90(56)
第三部分:单位间进率
1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 2市斤 1公顷=10000平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
第四部分:几何知识
三角形的面积=底高2。 公式 S= ah2 正方形的面积=边长边长 公式 S= aa
长方形的面积=长宽 公式 S= ab 平行四边形的面积=底高 公式 S= ah
梯形的面积=(上底+下底)高2 公式 S=(a+b)h2 内角和:三角形的内角和=180度。
长方体(或正方体)的体积=底面积高 公式:V=abh
圆的周长=直径 公式:C=r
圆的面积=半径半径 公式:S=r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=rh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2r2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面积高。公式:V=1/3Sh
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
一般运算规则
1 每份数份数=总数 总数每份数=份数 总数份数=每份数
2 1倍数倍数=几倍数 几倍数1倍数=倍数 几倍数倍数=1倍数
3 速度时间=路程 路程速度=时间 路程时间=速度
4 单价数量=总价 总价单价=数量 总价数量=单价
5 工作效率工作时间=工作总量 工作总量工作效率=工作时间 工作总量工作时间=工作效率
6 加数+加数=和 和-一个加数=另一个加数
7 被减数-减数=差 被减数-差=减数 差+减数=被减数
8 因数因数=积 积一个因数=另一个因数
9 被除数除数=商 被除数商=除数 商除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长 周长=边长4 C=4a 面积=边长边长 S=aa
2 正方体 V:体积 a:棱长 表面积=棱长棱长6 S表=aa6
体积=棱长棱长棱长 V=aaa
3 长方形 C周长 S面积 a边长
周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 xkb1.com
表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) 体积=长宽高 V=abh
5 三角形 s面积 a底 h高
面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高
6 平行四边形 s面积 a底 h高 面积=底高 s=ah
7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)高2 s=(a+b) h2
8 圆形 S面积 C周长 d=直径 r=半径 周长=直径=2半径 C=d=2r
面积=半径半径
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长高表面积=侧面积+底面积2 体积=底面积高体积=侧面积2半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积高3